If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2-31t+6=0
a = 5; b = -31; c = +6;
Δ = b2-4ac
Δ = -312-4·5·6
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-29}{2*5}=\frac{2}{10} =1/5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+29}{2*5}=\frac{60}{10} =6 $
| 25(n+5)=-40 | | -10u=-9u-8 | | 2e+6=4(e-1) | | 17.36-15.1s=-19.18-17.2s | | 4x-28=4(x-7) | | 21/6=x/36 | | -16-11-7w=11-5w | | 5+r−2=1 | | 4(5x-1)+3(x+2)=48 | | -7s-19=-9s+9 | | 1.5m-25=9m+17 | | 2(7+x)=5x+16 | | 13x+7=16x-1=180 | | 80x=154 | | -12k=-10k+18 | | 8=3a-4= | | 6m=5.67 | | 3(5x+2)+4=35 | | 154=80x | | 1+9-13w=20-3w | | y+y=9y^2 | | 51/2x+2/3x=3 | | 5(x-3)=5-+15 | | -18.3q=-13.05-19.2q | | 5x-8=1x+34 | | 8x+185+7+5x+141=x+153 | | 3x+8)+9=2(6x+8)39 | | (2x-11)+(105)=180 | | 14r+20=-16+16r | | 7.4t+19.9=2.8t-4.48 | | 302x=4x | | -12t+17=-12-16t-11 |